

 Cyberith GmbH For any questions, please contact

 Teslastraße 6 Cyberith Support
 3100 St. Pölten support@cyberith.com
 Austria +43 1 890 17 13
 FN 410899p

Unreal Engine – Integration Guideline

 CYBERITH Virtualizer Unreal SDK Documentation 2

Table of Contents
Prerequisites ..4

- Window 7 or newer ...4

- Unreal Game Engine ..4

- For projects containing C++ Code: Visual Studio ...4

Getting Started with the Cyberith SDK in Unreal Engine ...5

Step 1 - Setup Example Project ..6

1. Create new empty project ...6

2. Import the CybSDK Unreal Engine Plugin ..9

3. Regenerate your Visual Studio Solution (C++ Projects ONLY) .. 11

4. Activate Plugin and Open Example Map... 12

5. Start your Virtualizer Experience .. 18

Step 2: Setup Your Own Project – common to all options .. 19

1. Navigate to your project’s root folder .. 19

2. Import the CybSDK Plugin by extracting the provided folder in your project’s root folder 19

3. If your project is a C++ project: Regenerate your Visual Studio Project Files by right-clicking on
the “.uproject” file of your own project (not required for Blueprint projects) 19

4. Open your own project in Unreal Engine ... 19

Step 2a: Setup Your Own Project – Option 1: Using the BP_VirtPlayerController (like in SampleA) 20

Step 2b: Setup Your Own Project – Option 2: Creating/Modifying your own C++ Player Controller (only

for C++ projects) ... 22

Step 2c: Setup Your Own Project – Option 3: Creating/Modifying your own Blueprint Player Controller
 .. 23

 You can start by creating a Blueprint variable of the type “Virtualizer Device” 23

 Setup a node logic .. 24

No Virtualizer Hardware? – No Problem! ... 31

Project Settings Documentation ... 32

Virtualizer .. 32

Blueprint Settings Documentation ... 33

BP_VirtPawn ... 33

BP_VirtGameMode ... 34

 CYBERITH Virtualizer Unreal SDK Documentation 3

BP_VirtPlayerController .. 34

BP_VirtHapticListenerComponent .. 35

BP_VirtHapticEmitterComponent ... 36

Specific Haptic Emitter Scripts .. 38

Compatibility with Standard Functions of Unreal Engine ... 39

Gamepad Axis Emulation .. 39

Force Feedback Input .. 40

Blueprints ... 41

UVirt .. 41

GetSDKVersion .. 41

GetPluginManagedDevice ... 41

Sample – Haptic Emitter ... 41

SDK Documentation .. 42

C++ SDK Documentation ... 42

FCybSDK_PluginModule .. 42

GetVirtualizerInputDevice ... 42

FVirtInputDevice ... 42

GetDevice .. 42

IsDecoupled ... 42

UVirtDevice ... 43

GetMovementVector .. 43

GetMovementDirectionVector .. 43

GetPlayerOrientationVector .. 43

GetPlayerOrientationQuaternion .. 43

UVirtHapticEmitterComponent ... 43

Play .. 43

Stop ... 43

C++ Example usage ... 44

Locomotion ... 44

 CYBERITH Virtualizer Unreal SDK Documentation 4

Prerequisites

- Window 7 or newer

- Unreal Game Engine

Compatible: Unreal 4.20 or newer (incl. Unreal Engine 5)

https://www.unrealengine.com

- For projects containing C++ Code: Visual Studio

This is a requirement of Unreal Engine for using it with C++ code.
Blueprint-only projects work without Visual Studio as well.

Compatible: Visual Studio Community 2017 or newer (incl. 2019 & 2022)

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

Select “Desktop development with C++” in the Visual Studio installer.

https://www.unrealengine.com/
https://www.unrealengine.com/
http://unity3d.com/
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

 CYBERITH Virtualizer Unreal SDK Documentation 5

Getting Started with the Cyberith SDK in Unreal Engine

This instruction document is covering both Unreal Engine 4 and Unreal Engine 5. While menus may look

different in different versions of Unreal Engine, the concept and the required steps to implement the

Virtualizer remain unchanged!

To get started using the Virtualizer in Unreal Engine, we recommend you to first check the Example Maps

we deliver with our Unreal Engine SDK Package.
To do so you can either use a Blueprint project or a C++ project.

Once you have verified the functionality of the Virtualizer using our Example Map, you can integrate the

Virtualizer in your own project.

Thus, we suggest to follow these steps:

Step 1: Setup Example Project

Option A: Use a Blueprint Template

Option B: Use a C++ Template

Step 2: Setup your Own Project

 Option 1: Using the provided BP_VirtPlayer Controller

 Option 2: Creating/Modifying your own C++ Player Controller

 Option 3: Creating/Modifying your own Blueprint Player Controller

 CYBERITH Virtualizer Unreal SDK Documentation 6

Step 1 - Setup Example Project

Setting up the Cyberith Virtualizer SDK and the Example Maps in an Unreal Engine (4 or 5) Blueprint or C++
project is done by following steps:

1. Create new empty project

Start the Epic Launcher, click on Library and launch the installed Engine version you want to work with.

For Unreal Engine 4, create a New Project by selecting the Tab “New Project”, then choose
“Blueprint” (Option A) or “C++” (Option B) and “Blank”. We suggest to select “No Starter Content” (it also

works with Starter Content).

 CYBERITH Virtualizer Unreal SDK Documentation 7

Choose a project folder and a project name before clicking “Create Project”. Make sure to remember the
selected project folder and name (rootDirectory), as this will be required in the following steps. (The default

installation path is “C:\Users\YourWindowsUserName\Documents\UnrealProjects”.)

To create a new project in Unreal Engine 5, you need click “Games” and then select “Blueprint” on the right.

Select the same settings as described above for UE 4.

 CYBERITH Virtualizer Unreal SDK Documentation 8

You’ll have created an empty project now:

Screenshot taken in UE 4

Screenshot taken in UE 5

 CYBERITH Virtualizer Unreal SDK Documentation 9

2. Import the CybSDK Unreal Engine Plugin

Cyberith Virtualizer SDK is distributed as a custom Unreal Engine Plugin. Follow these steps to implement
it:

1. Close Unreal Engine.
2. Extract the CybSDK Plugin folder you downloaded from our developer webpage into the project:

o Unzip the provided .zip folder

o Copy the content of the extracted folder into the rootDirectory of your Unreal Engine
project

o The rootDirectory is the project folder + name created in step 1.
o The exact location of the SDK path must be: rootDirectory/Plugins/CybSDK_Plugin

o Example path: C:\Unreal\Blueprint_Example\Plugins\CybSDK_Plugin (Installation Folder:
C:\Unreal; Project Name: “Blueprint_Example”)

The above image shows a blank Blueprint project after the CybSDK Plugin was added.

 CYBERITH Virtualizer Unreal SDK Documentation 10

The above image shows a blank C++ project after the CybSDK Plugin was added. Note the “.sln” Visual
Studio Solution file.

 CYBERITH Virtualizer Unreal SDK Documentation 11

3. Regenerate your Visual Studio Solution (C++ Projects ONLY)

This step is only required for C++ Projects (OptionB as selected in step 1, as laid out above). Skip this step, if
you are using a Blueprint project (OptionA).

Right-click the .uproject file in your rootDirectory. In the pop-up menu, click “Generate Visual Studio project
files”.

This step is required for Visual Studio and Unreal Engine to recognize the newly added C++ code.

After your project files have been generated (windows below), there is no specific confirmation of success.

As long as there is no Error Massage, everything is normal.

 CYBERITH Virtualizer Unreal SDK Documentation 12

4. Activate Plugin and Open Example Map

The CybSDK comes with a prebuilt example scene to demonstrate the packages capabilities:

 Reopen your project. Then, click on “Settings” and “Plugins” to open the Plugins window in UE 4.

In UE 5, you need to click “Edit” and “Plugins” to do the same.

 CYBERITH Virtualizer Unreal SDK Documentation 13

 In the Plugins window, search for the “Project” Plugins. In the section “Virtual Reality”, you will

find the Cyberith Virtualizer SDK.

Check the checkbox to enable it. Then, a pop-up massage will appear telling you that a restart is
required. Click “Restart now”.

 CYBERITH Virtualizer Unreal SDK Documentation 14

 After the restart, close the Plugins window and add your Plugin content to the content browser:

In UE 4:

o Click on View Options in the bottom of the Unreal Editor
o Make sure the checkbox “Show Plugin Content” is checked

o Then, click the highlighted symbol in the bottom left of your Unreal Engine 4 Editor

 CYBERITH Virtualizer Unreal SDK Documentation 15

In UE 5:

o Open your “Content Drawler”, by clicking on the according button in the bottom left
o Click “Settings” in the top right of the “Content Drawler” window
o Make sure the checkbox “Show Plugin Content” is checked

 CYBERITH Virtualizer Unreal SDK Documentation 16

 Open “Cyberith Virtualizer SDK Content”, click “Example”, choose “Sample A_Components”, then

“Maps” and open the map “SampleA_Components”. This map is pre-configured, you should be

able to start it and get a first impression of the Cyberith Virtualizer SDK.

Sample A highlights our custom PlayerController called “BP_VirtPlayerController” which should handle

everything on its own.

The Player Controller in Sample A should serve as an easy start for having VR movement implemented right

out of the box.

 CYBERITH Virtualizer Unreal SDK Documentation 17

 Alternatively, the other option is “SampleB_BlueprintNodes”. It showcases the movement

behaviour demonstrated with the blueprint system (visual programming) of Unreal Engine.

You can find the corresponding map in the “Maps” subfolder, similarly to Sample A.

However, in SampleB, you can see how we did set up movement controlled by the Virtualizer using

Blueprint by checking the CybSamplePlayerController blueprint.

Double-click on CybSamplePlayerController to visualize its visual programming logic.

SampleB should help you in case you need to implement the Virtualizer into your own custom Player

Controller via Blueprint. In case there is no such need, we strongly recommend to use the Player Controller

provided by us, like in SampleA.

 CYBERITH Virtualizer Unreal SDK Documentation 18

5. Start your Virtualizer Experience

Check if your Virtualizer’s USB is plugged.

If it is plugged, you can run the Example Maps (SampleA and also SampleB) and test their functionality with

your Virtualizer.

Please select the VR Preview launch option in the drop-down-menu and have fun.

Please check two points:

 The Locomotion: Walk on your Virtualizer to see your character moving accordingly. This is
implemented in both SampleA & SampleB.

 The Haptic (for SampleA): Walk to the green elevator. When the elevator moves up or down, you

should feel Vibrations coming from the Virtualizer baseplate. This is implemented in SampleA only!

If you run into any problems with the steps above feel free to contact us: support@cyberith.com

mailto:support@cyberith.com

 CYBERITH Virtualizer Unreal SDK Documentation 19

Step 2: Setup Your Own Project – common to all options

Setting up the CybSDK Plugin with your own project, works equivalently to setting it up with the example

maps as laid out in Step 1:

1. Navigate to your project’s root folder

2. Import the CybSDK Plugin by extracting the provided folder in your project’s root folder

3. If your project is a C++ project:

Regenerate your Visual Studio Project Files by right-clicking on the “.uproject” file of your

own project (not required for Blueprint projects)

4. Open your own project in Unreal Engine

After repeating the instructions of Step 1 for your own project, the CybSDK should be visible in your own

project.

 CYBERITH Virtualizer Unreal SDK Documentation 20

Step 2a: Setup Your Own Project – Option 1: Using the

BP_VirtPlayerController (like in SampleA)

To activate the Virtualizer in your own project using the BP_VirtPlayerController (like in SampleA), one
more step is required:

 Open the World Settings:

o In UE 4 you need to click on Settings/World Settings
o In UE 5 you need to click on Window/World Settings

 In the World Settings menu, select the game mode “BP_VirtGameMode” from the drop-down
menu “GameMode Overide” in the section “GameMode”:

 CYBERITH Virtualizer Unreal SDK Documentation 21

 Now, make sure your Virtualizer is plugged

 Press “Play” and check if you can walk in your VR project using the Virtualizer

 Please read the documentation below for further information on the Virtualizer’s locomotion
functions and the Haptic Feedback

 CYBERITH Virtualizer Unreal SDK Documentation 22

Step 2b: Setup Your Own Project – Option 2: Creating/Modifying your

own C++ Player Controller (only for C++ projects)

 Start by creating a new C++ class of the type “Player Controller”:

 For exemplary C++ code, please view the “Example usage” of Locomotion in the last chapter of

this document. > follow link to chapter (click here)

 For further details, please check out the Doxygen Documentation for C++ available in our

Developer Center at “developer.cyberith.com” (in the Section “Downloads / SDK”).

 CYBERITH Virtualizer Unreal SDK Documentation 23

Step 2c: Setup Your Own Project – Option 3: Creating/Modifying your

own Blueprint Player Controller

In the case that you don’t want to use our standard character controller (and don’t want to create custom

C++ code), for example if you already use your own character controller or other logic limitations would

block you, we also offer an alternative way to use the Virtualizer’s data via Blueprints.

 You can start by creating a Blueprint variable of the type “Virtualizer Device”

Go to your desired component/actor blueprint.

On the right of the “Variables” dropdown view, you will see a small “+” where you will be able to type in

the search view “Virt Device”. Click on it to add the variable.

 CYBERITH Virtualizer Unreal SDK Documentation 24

 Setup a node logic

A particularly good starting point is to check the blueprint of CybSamplePlayerController from
SampleB_BlueprintNodes and eventually to copy/paste its logic in your own blueprint.

This section explains how this blueprint is set up. It shall serve as an example for you to set up your own.

 CYBERITH Virtualizer Unreal SDK Documentation 25

What does this blueprint do?

On the top left, you will find the “Tick” node.

From the Tick which is the “every frame update” call:

- First part of the sequence is “finding components”

o We try to find an attached “Character” component & register it in the “PlayerCharacter” variable

of this blueprint.

o We then try to find an attached “CharacterMovement” component & register it in the

“PlayerCharacterMovement” variable of this blueprint.

 CYBERITH Virtualizer Unreal SDK Documentation 26

- Second part of the sequence is updating the player, rotating it & moving it.

o We first check if we are the owner of the PlayerController.

o We then check the presence of a pawn possessed by our PlayerController

 CYBERITH Virtualizer Unreal SDK Documentation 27

o Next in our logic, we get the plugin managed Virtualizer device & “open it” (ask data access to the

Virtualizer) if it is not opened.

As a reminder, please do not forget that only one program can access Virtualizer data at any time!

o We then prevent slow movement on the device to make us move while we shouldn’t, customize

the behaviour as you see fit.

 CYBERITH Virtualizer Unreal SDK Documentation 28

o And the node finishes by applying movement input to the CharacterMovement component or

directly to the possessed Pawn depending on the possessed pawn components.

o This means that we have calculated the movement input before.

o We start by getting the Virtualizer Device variable we got earlier.

 First, we get the Player Orientation data (which is between 0 & 1).

 Let’s multiply it by 360 to have an orientation ranging between 0° and 360°.

 Then, get the Controlled Pawn’s Forward direction vector.

 This direction will then be rotated by the player rotation, to get the “Virtualizer” forward

direction, relative to player’s current rotation.

 CYBERITH Virtualizer Unreal SDK Documentation 29

o We then continue by

 Getting the Virtualizer’s movement direction vector.

> Is the player walking forward in the Virtualizer? Backward?

 Scale it by the estimated Virtualizer’s Movement Speed (meter / seconds).

> Is the player walking fast? Slow?

 Get the forward & right vector of the previously calculated rotation, scale it by the

movement vector & make it thus a world oriented movement vector scaled with speed.

o (Optional) It’s also possible to scale this movement by a custom factor through an easy to modify

blueprint variable.

To finish this whole topic, we can also notice that in our CybSamplePlayer, we added a call to force the VR headset

tracking “Origin” to be located on the floor (as normally you have setup your Virtualizer to be calibrated with your

VR headset this way).

This is how you do it.

 CYBERITH Virtualizer Unreal SDK Documentation 30

Note: In order to avoid potential problems caused by sending contradicting commands to the Virtualizer,

a Virtualizer can only have one open connection at a time!

This means that it can also only connect to one Character Controller / Actor within Unreal Engine!

Tip: In case you can’t open a connection to your Virtualizer, check if you have multiple Character
Controllers activated during runtime of your application! You may spawn (an additional?) Character

Controller when you are launching the application by pressing the “Play” Button.
In case there are two Character Controllers active during runtime, only one of them will connect to the

Virtualizer.

If there are two Actors that both try to open a connection to the Virtualizer (at runtime), only one of

them will be able to open the connection successfully.

 CYBERITH Virtualizer Unreal SDK Documentation 31

No Virtualizer Hardware? – No Problem!

You may want to create applications for the Cyberith Virtualizer without having access to a real hardware
device.
For this purpose, we added two kinds of virtual devices emulating a Virtualizer:

 Keyboard – WASD for movement and QE for rotation

 Controller (Xbox 360 & Xbox One Controller) – left joystick for movement and right joystick for
rotation. Please plug the Xbox Controller to your PC per USB cable to ensure proper functionality.

This means:
If you don’t have a Virtualizer available you can still test the functionality of your implementation with the
help of an Xbox Controller or with the help of your keyboard!

In case no Virtualizer is plugged, the system will automatically use the Xbox Controller. If neither a
Virtualizer nor an Xbox Controller are plugged, the system will automatically use the keyboard.

Alternatively to the automatic selection, these inputs methods can be configured in the project settings. –
as described in the next chapter.

Note:

 Be aware, that these settings will still be active in a built executable and allow to test the finished

(built) application without the need of real Virtualizer hardware.

 Currently, you can not walk backwards with an Xbox Controller. If you press the left joystick back,
the avatar still walks forwards. That does not mean that you can’t walk back with the Virtualizer! It

is a problem caused by the Xbox controller implementation.

 The Xbox Controller allows you to basically check on the functionality of the haptic feedback
(although it can only rumble with one frequency and not in many different ones like the Virtualizer.)

The keyboard input does not allow you to check on the haptic feedback functionality.

 For development and testing purposes it can be practical to use an Xbox Controller even if you

have a real Virtualizer next to you. Using such a controller, you don’t need to stand up from your

comfortable chair for every single test ;)

 CYBERITH Virtualizer Unreal SDK Documentation 32

Project Settings Documentation

The main settings for the Virtualizer are available in your projects settings in the Plugins section.

Click Settings (in UE 4) or Edit (in UE 5), then click Project Settings. Scroll down to the section Plugins and
click on CybSDK to find the following settings:

Virtualizer

Device Type selection to switch between real

Hardware or emulated debug devices.

 Unused due to absolute tracking.

 Source selection for the Virtualizers haptic

feedback unit.

Decoupling Type selection to test coupled and

decoupled behavior.

 CYBERITH Virtualizer Unreal SDK Documentation 33

Blueprint Settings Documentation

All of the following settings can be found through the Content Browser of Unreal Engine.

Click Cyberith Virtualizer SDK Content and then CybSDK in order to see the following components:

BP_VirtPawn

The BP_VirtPawn is a Pawn object, derived from the Unreal Character class. This pawn is moved around

when the user walks in the Virtualizer. It also handles the haptic feedback of the Virtualizer. The

BP_VirtPawn is used in the ExampleMap. The VirtPawn is selected in the BP_VirtGameMode described

later and is spawned at the Player Start position when the ExampleMap is started.

All the inherited objects and the VROrigin (including

the Camera) are Unreal components responsible for

movement and visualization in Unreal.

The other Blueprints are provided by Cyberith and

handle the haptic of the Virtualizer.

If you want to deactivate certain HapticEmitter

Blueprints, you have to select the specific

HapticEmitter Blueprint and unselect the “Auto

Activate” parameter in the Activation property in the

details view.

 CYBERITH Virtualizer Unreal SDK Documentation 34

BP_VirtGameMode

The CybSDK defines its own GameMode to define the default Blueprint classes to be spawned.

BP_VirtPlayerController

This script moves the pawn according to the Virtualizer input, as described in the Example Usage.

Overriding the default PlayerController to move
the pawn according to the Virtualizer input.

Overriding the default Pawn which bundles all

major features in one.

Movement Speed Multiplier, to fine tune the

players speed. Recommended setting: appx. 1.2

Reference to a SceneComponent that will be

rotated according to the player’s orientation in

the device. If not set will search for

"ForwardDirection" attached to pawn.

 CYBERITH Virtualizer Unreal SDK Documentation 35

BP_VirtHapticListenerComponent

This script receives haptic feedback emitted by all active HapticEmitters in range and activates the
Virtualizers haptic vibration unit.

The Haptic Listener sends two parameters for the haptic unit. One of these two parameters is the
frequency, the haptic unit vibrates with. The other parameter is the volume (= “strength”) the haptic unit

vibrates with.

As the resonance frequency of implemented haptic unit is around 40 Hz, the Haptic Listener does not send

out frequencies from 35 to 45 Hz. This avoids loud and uncomfortable vibrations. Instead of sending
frequencies of 35-39 Hz it sends 34 Hz and instead of sending frequencies of 40-45 Hz it sends the
frequency of 46 Hz. You might notice this behavior if you select one of these frequencies in a haptic emitter,

which is explained in the next chapter.

In case multiple Haptic Emitters are active and within range, the HapticListener makes a weighted average

of all the frequencies and sums up the volume caused by all Emitters. The volume of an emitter is defined
by two curves (“Volume Over Time” & “Force over Distance”) for each Emitter individually. Note, that the

overall strength of the vibration can not exceed the maximum strength, independently of how many
emitters you add.

Maximum range for Haptic Emitters to be

“heard” from.

 CYBERITH Virtualizer Unreal SDK Documentation 36

BP_VirtHapticEmitterComponent

This script emits signals causing haptic feedback in a specific radius around it. These signals are received
by a HapticListener, which in turn causes the Virtualizer baseplate to vibrate.

Attach such a Haptic Emitter to objects, that you want to cause haptic feedback!

Add a Haptic Emitter by:

 Select an object you want to cause vibrations.

 Select the Haptic Emitter you want to use (f.ex. “BP_VirtHapticEmitterComponent”)

 Add the Haptic Emitter to the object by Drag & Drop.

 CYBERITH Virtualizer Unreal SDK Documentation 37

Once added, you will see this Haptic Emitter Script:

The generic Haptic Emitter “BP_VirtHapticEmitterComponent” Blueprint is the base Blueprint for causing
haptic feedback. You can either activate the haptic functionality by ticking the “AutoStart Playing” checkbox

or call the Play() and Stop() method of the Blueprint (the functionality is implemented in C++, but there are

callable Blueprint methods) to manually activate and deactivate the haptic emitter whenever you like to
do so.

Additionally to the generic Haptic Emitter Blueprint we added four specific Haptic Emitter Blueprints for
special use cases.

In these specific Haptic Emitter Blueprints you can see the Play and Stop methods in action. Check out the

Blueprints and you can see examples of how these methods are used.

Reference to the Haptic Listener receiving Haptic

Feedback. If not set will find one in scene

Automatically start playing on application

startup. startup. Check this box, if you want an

object to cause vibrations whenever the player

comes close to it. Otherwise, you need to activate

it separately by calling the Play method of this

class. To deactivate the Emitter, call the Stop

method. The Play and the Stop method are

explained below.

Loop the haptic feedback over time.

FloatCurve for the Haptic force over time.

Normalized [y = force factor, x = time in s]

FloatCurve for the Haptic force over distance to

the Haptic Listener.

Normalized [y = force factor, x = distance in m]

Duration in seconds for the feedback.

Max range of the haptic effects.

Frequency for the haptic unit. Range: 10-80Hz.

The Haptic Listener filters frequencies between

35-45Hz and sets it to 34 or 46 Hz. Keep that in

mind when choosing frequencies.

 CYBERITH Virtualizer Unreal SDK Documentation 38

Specific Haptic Emitter Scripts

The following specific Haptic Emitter Blueprints are part of Cyberith’s Unreal Plugin to demonstrate

exemplary use cases of haptic feedback. Feel free to add your own specific Haptic Emitter Blueprints for
whatever purposes you like.

 BP_FallImpactHapticEmitter: Haptic is triggered when the player lands on the floor after

falling/jumping from higher ground. The player has to fall for more than 0.1 seconds to activate
the haptic feedback once reaching the ground. This Blueprint is attached to the BP_VirtPawn.

 BP_MovementTriggeredHapticEmitter: Haptic is triggered when the object, this Blueprint is
attached to, moves. This Blueprint is attached to the Elevator object in the ExampleMap.

 BP_PlayerHitHapticEmitter: Haptic is triggered when the player is hit by an object. The object

hitting the player has to trigger the PlayerHit Event of this Blueprint. This Blueprint is attached to
the BP_VirtPawn. Furthermore, bullets (looking like big white balls) are spawned during runtime
from the red canon (consisting of a cube and a cylinder). The bullets trigger the PlayerHit Event to

cause haptic feedback upon hitting the BP_VirtPawn.

 BP_WalkAgainstColliderHapticEmitter: Haptic is triggered when the player walks against an
obstacle. The haptic is activated when the player walks against the obstacle for more than 0.5

seconds. This Blueprint is attached to the BP_VirtPawn.

If one of these Blueprints is added to an object in a scene, the generic Haptic Emitter Blueprint

(“BP_VirtHapticEmitterComponent”) shall not be used. The described specific Haptic Emitters work
autonomously.

The “AutoStart Playing” checkbox is not available on any of these scripts. These emitters use the Play and
Stop methods of the Haptic Emitter Blueprint.

 CYBERITH Virtualizer Unreal SDK Documentation 39

Compatibility with Standard Functions of Unreal Engine

The native CybSDK handles two functionalities differently compared to the standard functions of Unreal
Engine.

In order to ease the process of implementing the Virtualizer into pre-existing systems, we added two “UE

compatibility modes” in order to match the standard functions of Unreal Engine:

Gamepad Axis Emulation

Using this functionality, the Virtualizer device emulates standard GamePad Axis input for better
compatibility with existing PlayerInput Systems.

This settings can be configured in Settings -> Project Setting -> Engine -> Input.

Move Forward == Left Joystick Up

Move Right == Left Joystick Right
Absolute Orientation == Right Joystick result

 CYBERITH Virtualizer Unreal SDK Documentation 40

Force Feedback Input

The Virtualizer is fully compatible with the UE4 Force Feedback System for haptic feedback. We created
this mode for better compatibility with existing PlayerInput Systems.

This mode can be activated in Settings -> Project Settings -> Plugins -> CybSDK

 CYBERITH Virtualizer Unreal SDK Documentation 41

Blueprints

All functionalities and classes provided by the CybSDK Plugin are available in Blueprint.

UVirt

This UBlueprintFunctionLibrary exports static functions into blueprint.

GetSDKVersion

Returns: int
Returns the version number of the Virtualizer SDK.

GetPluginManagedDevice

Returns: UVirtDevice*
Gets the Virtualizer device object currently managed by the CybSDK Plugin.

Sample – Haptic Emitter

 CYBERITH Virtualizer Unreal SDK Documentation 42

SDK Documentation

C++ SDK Documentation

For full documentation of the C++ SDK take a look into the official online Documentation.

All classes and functions are documented in their respective header file located in the Include directory

and should show up in your Visual Studio IntelliSense

FCybSDK_PluginModule

This class manages the main CybSDK plugin functionalities.

GetVirtualizerInputDevice

Returns: TSharedPtr<FVirtInputDevice>

Returns the UnrealEngine IInputDevice device managed by the FCybSDK_PluginModule.

FVirtInputDevice

This class has full authority over the Virtualizer device. Here the device is selected, a connection

established and managed.

GetDevice

Returns: TWeakObjectPtr<UVirtDevice>
Returns the Virtualizer device managed by the FVirtInputDevice.

IsDecoupled

Returns: bool

Returns true if the UVirtDevice supports decoupled movement, otherwise false.

https://developer.cyberith.com/download/sdk/windows_cpp/docs

 CYBERITH Virtualizer Unreal SDK Documentation 43

UVirtDevice

This blueprintable wrapper class holds the native Virtualizer Device and supports multiple Unreal specific
methods.

GetMovementVector

Returns: FVector
Returns the movement direction as a speed scaled vector relative to the current player orientation.

GetMovementDirectionVector

Returns: FVector
Returns the movement direction as vector relative to the current player orientation.

GetPlayerOrientationVector

Returns: FVector
Returns the orientation of the player as vector.

GetPlayerOrientationQuaternion

Returns: FQuat

Returns the orientation of the player as quaternion.

UVirtHapticEmitterComponent

Play

Start playing the Haptic Emitter by adding it to the Haptic Listener

Stop

Stop playing the Haptic Emitter by removing it from the Haptic Listener

 CYBERITH Virtualizer Unreal SDK Documentation 44

C++ Example usage

Locomotion

void AVirtPlayerController::Tick(float DeltaSeconds)

{

 /** Base call */

 Super::Tick(DeltaSeconds);

 /** Check components */

 // Ignore Virtualizer input if not local player

 if (!IsLocalPlayerController())

 return;

 // Ignore Virtualizer input if not possessed

 APawn* pawn = GetPawn();

 if (pawn == nullptr)

 return;

 // FCybSDK_PluginModule::GetVirtualizerInputDevice() will be initialized

 // by the Unreal Engine in the first player tick

 if (m_deviceController.IsValid() == false)

 {

 m_deviceController = FCybSDK_PluginModule::GetVirtualizerInputDevice();

 if (m_deviceController.IsValid() == false)

 return;

 }

 TWeakObjectPtr<UVirtDevice> device = m_deviceController->GetDevice();

 if (device == nullptr || !device->IsOpen())

 return;

 /** Calculate Movement & Apply Orientation */

 // Get movement speed

 FVector movement = device->GetMovementVector() * MovementSpeedMultiplier;

 // Get player orientation

 FQuat localOrientation = device->GetPlayerOrientationQuaternion();

 // Determine global orientation for characterController Movement

 FQuat globalOrientation;

 CYBERITH Virtualizer Unreal SDK Documentation 45

 // For decoupled movement we do not rotate the pawn --> HMD does that

 if (m_deviceController->IsDecoupled())

 {

 if (m_forwardDirection != nullptr)

 {

 m_forwardDirection->SetRelativeRotation(localOrientation);

 globalOrientation = m_forwardDirection->GetComponentQuat();

 }

 else

 {

 // Quaternions are applied right to left

 globalOrientation = localOrientation * pawn->GetActorQuat();

 }

 }

 // For coupled movement we rotate the pawn and HMD

 else

 {

 pawn->SetActorRotation(localOrientation);

 globalOrientation = localOrientation;

 }

 FVector motionVector = globalOrientation * movement;

 m_motionVector = motionVector;

 if (motionVector.IsZero())

 return;

 /** Apply Movement */

 // If pawn is a character we use CharacterMovementComponent

 if (m_characterMovementComponent != nullptr)

 {

 // * 100 for correct Unreal Units --> MoveSmooth(m/s * 100) -->

MoveSmooth(cm)

 m_characterMovementComponent->MoveSmooth(motionVector * 100.0f,

DeltaSeconds);

 }

 // If pawn has explicit MovementComponent use it

 else if (m_movementComponent != nullptr)

 {

 // AddMovementInput wants normalized vectors --> 10 is the theoretical max

speed a user can achieve

 m_movementComponent->AddInputVector(motionVector / 10.0f);

 }

 CYBERITH Virtualizer Unreal SDK Documentation 46

 // Otherwise use simple move

 else

 {

 // * 100 for correct Unreal Units --> Set(cm + m/s * 100 * s) --> Set(cm)

 pawn->SetActorLocation(pawn->GetActorLocation() + motionVector * 100.0f *

DeltaSeconds);

 }

}

